EFFICIENT PROTECTION OF GRAPHITE MATERIALS AGAINST CORROSION & OXIDATION

INCREASES LIFETIME OF GRAPHITE PARTS IN EPITAXY PROCESSES

EFFICIENT PROTECTION

Nippon Kornmeyer Carbon Group GmbH and Fraunhofer IISB present their 2^{nd} innovative and patented coating technology SICCOTA $^{\otimes}$

The corrosion and oxidation resistant SiC coating can be applied to isostatic pressed graphite substrates and used in semiconductor production and processing steps along the value chain. SICCOTA® protects graphite parts from decomposition and corrosion in typical high temperature and reactive gas processes like SiC / nitride epitaxy and oxidation, resulting in longer lifetime and improved cost of ownership.

R&D BY FRAUNHOFER IISB:

- Delivery of test parts and application demonstrators
- Application testing support
- Custom tailored coating developments and short feedback loops
- R&D project collaboration

PARTS SUPPLY BY NIPPON KORNMEYER CARBON GROUP GMBH:

From small batches to relevant production quantities

EFFICIENT SURFACE SEALING

The SICCOTA® coating technology utilizes a dense SiC layer resulting in a highly efficient surface sealing of the porous graphite substrate.

As a result, the gas permeability of graphite materials is drastically reduced by sealing the surface near pores during the coating process.

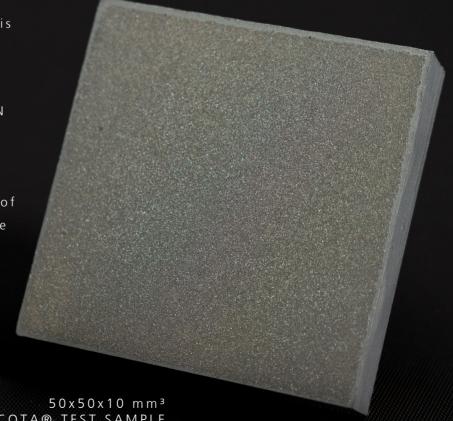
Darcy's Permeability tests (according to EN 993-4: 1995) of SICCOTA® samples show a gas permeability of at least three orders of magnitude lower in comparison to original state.

ADVANCED COATING TECHNOLOGY

INCREASES SERVICE LIFE OF GRAPHITE PARTS AND MAKES SEMICONDUCTOR PROCESSES MORE ECONOMIC

COATING FEATURES AND BENEFITS

- Protection of graphite part (avoidance of contact reactions)
- High temperature resistance (>1600°C)
- Resistance against corrosive, reducing and oxidizing gases
- Wear resistance and excellent adhesion to the substrate
- Low gas permeability due to highly dense crystalline SiC-structure

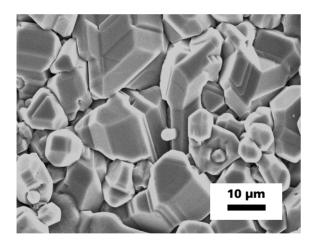

TECHNOLOGY BENEFITS

- Applicable to graphites of different porosity & thermal expansion (CTE)
- Flexibility in part size and geometry
- Partial and all around coating possible
- Resource efficient and environmentally friendly
- Use of conflict-free materials only

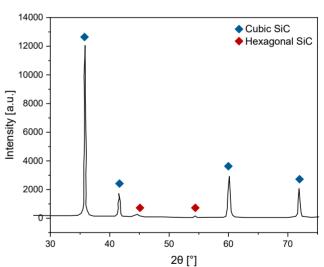
EXCELLENT MECHANICAL PROPERTIES

 Cross cut test after DIN EN ISO 2409:2013-06 revealed that SICCOTA® is classified as ISO 0

 Pull off test after DIN EN ISO 4624:2014-06 shows 8 MPa adhesive strength to the graphite substrate before failure of the adhesive used for the measurements


SICCOTA® TEST SAMPLE

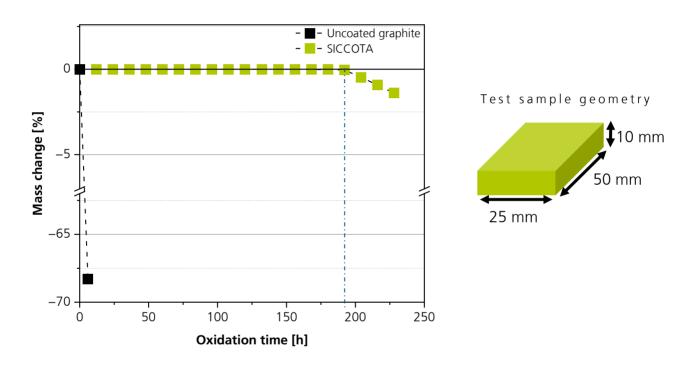
COATING MORPHOLOGY


HIGH QUALITY SILICON CARBIDE LAYER

The dense polycrystalline SiC layer mainly consists of cubic SiC (99.97%) and therefore is a proper candidate for protection of graphite parts.

SEM-IMAGE OF THE SICCOTA®
COATING SURFACE

XRD-DIFFRACTOGRAM OF THE SICCOTA ® COATING


Contactless measurements of the coating surface with a 3D-Profilometer shows an average roughness R_a of 1-2 μm_{\cdot}

INCREASES LIFETIME OF GRAPHITE PARTS IN OXIDATION PROCESSES

HIGH OXIDATION RESISTANCE

OXIDATION OF SURFACE-SEALED GRAPHITE SAMPLES AT 1100°C UNDER CONTINUOUS AIR FLOW

To measure oxidation resistance, the mass change [%] of a sample in an oxidizing environment was measured at time increments. Increased oxidation resistance of the SICCOTA® treated graphite was confirmed with no mass change after 192 hours in an oxidizing environment.

WITHSTANDS SIC EPITAXY CONDITIONS

LOW CONTAMINATION LEVEL OF SIC WAFER

AFTER EPITAXY RUN USING SICCOTA® WAFER CARRIER

Detection limit (dl)	Species	Processed SiC Wafer (Si-plane)	Unprocessed SiC-Wafer (Si-plane)	Industrial epitaxy process
0.031	Li	<dl< td=""><td><dl< td=""><td>n.m.</td></dl<></td></dl<>	<dl< td=""><td>n.m.</td></dl<>	n.m.
0.126	Na	7.157	1.068	n.m.
1.125	Al	1.583	<dl< td=""><td>n.m.</td></dl<>	n.m.
0.115	K	11	0.364	0.053
0.738	Ca	2.641	18.78	<dl (0.05)<="" td=""></dl>
0.016	Ti	1.52	<dl< td=""><td><dl (0.03)<="" td=""></dl></td></dl<>	<dl (0.03)<="" td=""></dl>
0.063	V	1,58	<dl< td=""><td><dl (0.02)<="" td=""></dl></td></dl<>	<dl (0.02)<="" td=""></dl>
0.471	Cr	<dl< td=""><td><dl< td=""><td>0.105</td></dl<></td></dl<>	<dl< td=""><td>0.105</td></dl<>	0.105
0.051	Mn	<dl< td=""><td><dl< td=""><td>0.488</td></dl<></td></dl<>	<dl< td=""><td>0.488</td></dl<>	0.488
0.270	Fe	0.385	<dl< td=""><td>0.306</td></dl<>	0.306
0.108	Со	0.412	<dl< td=""><td><dl (0.02)<="" td=""></dl></td></dl<>	<dl (0.02)<="" td=""></dl>
0.363	Ni	1.448	<dl< td=""><td><dl (0.25)<="" td=""></dl></td></dl<>	<dl (0.25)<="" td=""></dl>
0.618	Cu	<dl< td=""><td><dl< td=""><td><dl (0.14)<="" td=""></dl></td></dl<></td></dl<>	<dl< td=""><td><dl (0.14)<="" td=""></dl></td></dl<>	<dl (0.14)<="" td=""></dl>
0.032	Zn	0.3	<dl< td=""><td><dl (0.05)<="" td=""></dl></td></dl<>	<dl (0.05)<="" td=""></dl>
0.565	As	<dl< td=""><td><dl< td=""><td><dl (0.21)<="" td=""></dl></td></dl<></td></dl<>	<dl< td=""><td><dl (0.21)<="" td=""></dl></td></dl<>	<dl (0.21)<="" td=""></dl>
0.015	Sr	<dl< td=""><td><dl< td=""><td><dl (0.003)<="" td=""></dl></td></dl<></td></dl<>	<dl< td=""><td><dl (0.003)<="" td=""></dl></td></dl<>	<dl (0.003)<="" td=""></dl>
0.008	Cd	<dl< td=""><td><dl< td=""><td><dl (0.004)<="" td=""></dl></td></dl<></td></dl<>	<dl< td=""><td><dl (0.004)<="" td=""></dl></td></dl<>	<dl (0.004)<="" td=""></dl>
0.010	Ba	0.012	0.051	<dl (0.001)<="" td=""></dl>
0.001	Та	0.077	0.066	0.058
0.012	Pb	<dl< td=""><td><dl< td=""><td><dl (0.002)<="" td=""></dl></td></dl<></td></dl<>	<dl< td=""><td><dl (0.002)<="" td=""></dl></td></dl<>	<dl (0.002)<="" td=""></dl>
0.002	Bi	<dl< td=""><td><dl< td=""><td><dl (0.001)<="" td=""></dl></td></dl<></td></dl<>	<dl< td=""><td><dl (0.001)<="" td=""></dl></td></dl<>	<dl (0.001)<="" td=""></dl>

Values for surface contamination in 1E10 at/cm², measured by VPD ICP-MS on Si-side (upwards) of virgin & processed epi-ready Ø100 mm SiC-wafer.

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Schottkystraße 10 91058 Erlangen Germany

Contact:

Dr.-Ing. Matthias Trempa Group Manager Crystallization and Coating Technologies Phone +49 9131761268 matthias.trempa@iisb.fraunhofer.de

www.iisb.fraunhofer.de

Nippon Kornmeyer Carbon Group GmbH

Im Nassen 3 53578 Windhagen Germany

Contact:

Dirk Muetzenich Global Product Management & Sales Phone +49 16096073490 dirk.muetzenich@carbongroup.de

www.nk-carbon.com

Photography © Elisabeth Iglhaut / Fraunhofer IISB