
HIGH TEMPERATURE

AND CORROSION RESISTANT COATING

TACCOTA®

TACCOTA®

EFFICIENT PROTECTION OF GRAPHITE PARTS USED IN SEMICONDUCTOR PRODUCTION & PROCESSING

HIGH TEMPERATURE AND CORROSION RESISTANT COATING

Nippon Kornmeyer Carbon Group GmbH and Fraunhofer IISB present their innovative and patented tantalum carbide coating technology TACCOTA®.

The high temperature and corrosion resistant coating can be applied to graphite substrates and used in semiconductor material production and processing. It secures graphite parts from decomposition and corrosion in typical high temperature and reactive gas processes like SiC and nitride PVT crystal growth and epitaxy, ion implantation, and plasma processing. The benefit is an increased lifetime and improved cost of ownership.

R&D BY FRAUNHOFER IISB:

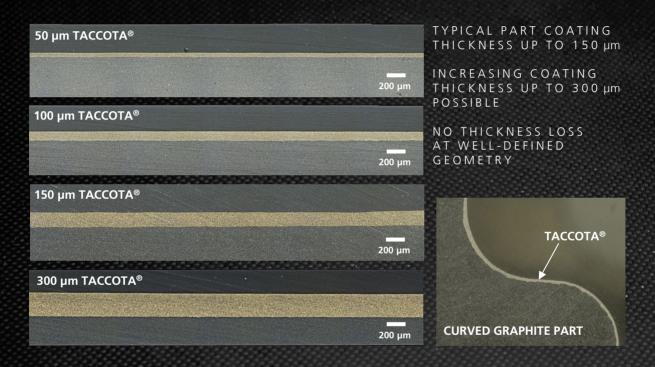
- Delivery of test parts and application demonstrators
- Application testing support
- Custom tailored coating developments and short feedback loops
- R&D project collaboration

PARTS SUPPLY BY NIPPON KORNMEYER CARBON GROUP GMBH:

From small batches to relevant production quantities

ADVANCED COATING TECHNOLOGY

TECHNOLOGY BENEFITS

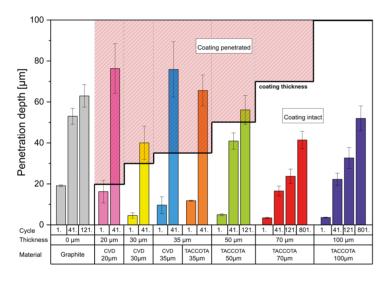

- Flexible for part size and geometry
- Partial and all around coating possible
- Part refurbishment
- Resource efficient and environmentally friendly
- Use of conflict-free materials only
- Industry ready

COATING FEATURES

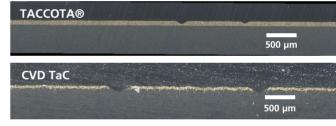
- High temperature resistance (up to 3000°C)
- Resistance against corrosive gases and fluids, molten metals and salts
- Excellent wear resistance and good adhesion to the graphite substrate
- Thickness between 20-300 µm adjustable
- \bullet Surface roughness R_a of about 1-2 μm independent of coating thickness
- Adjustable from porous to dense layers with different permeabilities
- Variable coating composition (mixtures with other UHTC materials)

TACCOTA® FLEXIBLE COATING PROPERTIES

The process technology allows the adjustment of the desired coating properties such as thickness ...


... and composition (i.e. blend with other high temperature ceramic materials)

TACCOTA® + COMPOSITE A	TACCOTA® + COMPOSITE B
200 µm	200 μm


UNDER DEVELOPMENT!

TACCOTA® MECHANICAL STABILITY

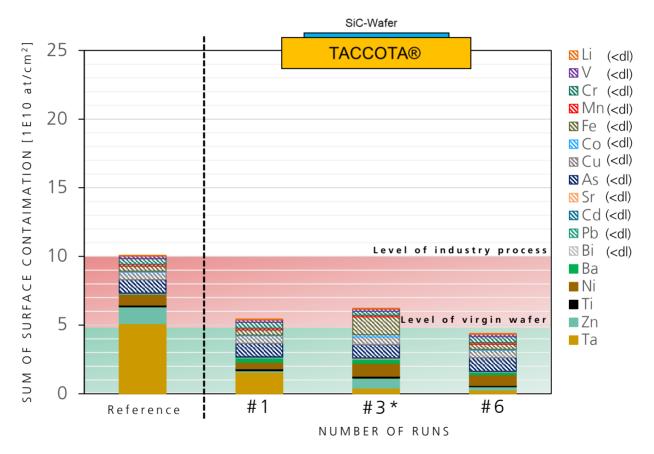
- At least 8 MPa bonding strength to substrate according to pull off test after DIN EN ISO 4624:2014-06
- Low penetration depth according to scratch test after DIN 50324 / ASTM G99 and G133):

ENHANCED WEAR
RESISTANCE DUE
TO INCREASED
COATING THICKNESS

TACCOTA® READY FOR HIGH TEMPERATURE APPLICATION

- Resistivity of 2.3 $\mu\Omega$ cm (four point measurement @ RT) certificates a good electrical conductivity
- Thermal conductivity of 27-32 W/m*K measured from 1500°C to 2000°C
- Emissivity of 0.55-0.6 measured from 1500°C to 2000°C @ 1μm wavelength (infrared range)

TACCOTA LOW-CONTAMINATION WAFER CARRIERS


- EVEN THE LOWER SIC WAFER SURFACE WHICH IS IN DIRECT CONTACT TO TACCOTA® SHOWS NO SIGNIFICANT CONTAMINATION (RUN #3)
- MINIMUM OF 9
 RUNS WITHOUT
 ANY DAMAGE OF
 THE CARRIER AND
 COATING
 DEMONSTRATED

TACCOTA® WAFER CARRIER BEFORE SIC EPITAXY RUN

TACCOTA® COATING PERFORMANCE UNDER SIC EPITAXY CONDITIONS

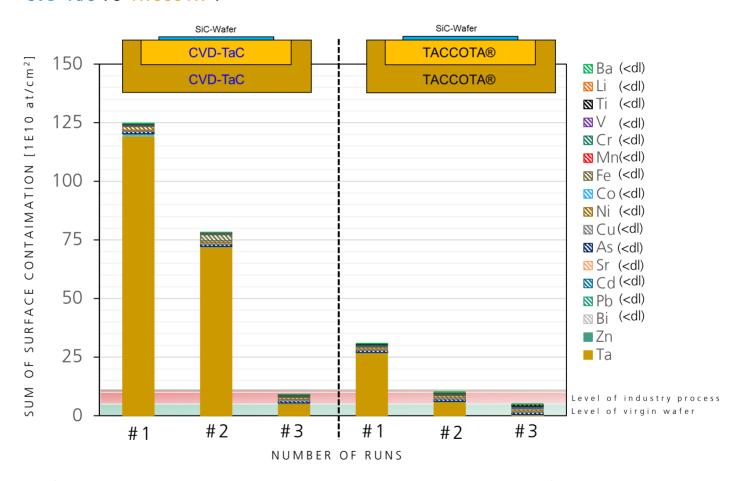
ADDING A NEW TACCOTA® WAFER CARRIER TO A REFERENCE SETUP (CONTAMINATION LEVEL COMPARABLE TO INDUSTRY PROCESSES):

Surface contamination was measured by VPD ICP-MS on Si-side of epi-ready \emptyset 100 mm SiC-wafers. For each run, a virgin cleaned SiC-wafer was used with Si-side on top. <dl means below detection limit.

^{*}In run #3, the SiC-wafer was intentionally flipped with Si-side in direct contact to TACCOTA® wafer carrier.

TACCOTA LOW-CONTAMINATION WAFER CARRIERS

BY THE USE OF TACCOTA® SUSCEPTOR & WAFER CARRIER, THE INITIAL TANTALUM SURFACE CONTAMINATION ON THE SIC WAFER TOP SURFACE CAN BE REDUCED BY 75 %.


 THE NUMBER OF FIRST EPI RUNS AFTER WHICH THE TANTALUM CONTAMINATION REACHES A NON-CRITICAL LEVEL CAN BE REDUCED.

TACCOTA® WAFER CARRIER AFTER 6 SIC EPITAXY RUNS

TACCOTA® COATING PERFORMANCE UNDER SIC EPITAXY CONDITIONS

CHANGE COMPLETE SETUP (SUSCEPTOR AND CARRIER) FROM

Surface contamination was measured by VPD ICP-MS on Si-side of epi-ready Ø100 mm SiC-wafers. For each run, a virgin cleaned SiC-wafer was used with Si-side on top. <dl means below detection limit.

Fraunhofer Institute for Integrated Systems and Device Technology IISB

Schottkystraße 10 91058 Erlangen Germany

Contact:

Dr.-Ing. Matthias Trempa
Group Manager Crystallization and Coating Technologies
Phone +49 9131761268
matthias.trempa@iisb.fraunhofer.de

www.iisb.fraunhofer.de

Nippon Kornmeyer Carbon Group GmbH

Im Nassen 3 53578 Windhagen Germany

Contact:

Dirk Muetzenich
Global Product Management & Sales
Phone +49 16096073490

dirk.muetzenich@carbongroup.de

www.nk-carbon.com

Photography: © Fraunhofer IISB